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SOME RECENT DEVELOPMENTS IN FLUTTER OF FLAT PANELS

Herman L. Bohon and Sidney C. Dixon
Aerospace Englneer, Aerothermoelasticity Section
Structures Research Division
Langley Research Center

Summary ZC\
i

The accuracy and range of validity of flutter
analysis of isotropic panels using the two-
dimensional static aerodynamic approximation is
investigated by comparison with results obtained on
the basis of exact linearized three-dimensional
potential-flow theory. For unstressed panels these
results indicate that for Mach number M 2 1.3,
two-dimensional static aerodynamics is applicable
over the whole range of length-width ratios greater
than one. It is alsoc demonstrated that the agree-
ment between theory and experiment is good when the
data are obtained from panels representative of the
idealized conditions of theory. For stressed
panels, analyses using the approximate aerodynamics
do not predict the trend of published experimental
results; use of more exact aerodynamics does not
alter this comparison, but inclusion of structural
damping improves the correlation of theory and
experiment. It appears that other factors such as
differential pressure and initial imperfections
must be considered in order to further improve the
correlation.

In addition, flutter of corrugation-stiffened
panels is considered. Experimental results for
unstressed panels are compared with numerical
results based on two-dimensional static aerody-
namics for panels simply supported on all edges.
This comparison shows that in some cases flutter
occurred at dynamic pressures as low as 2 percent
of the predicted value. Since the results of the
first part of the paper suggest that such discrep-
ancies are not due to the aerodynamics used, the
structural representation of the panels is consid-
ered. It is shown that the edge support of the
test panels along the edges parallel to the airflow
is more nearly represented by deflectional springs;
hence, the influence of this type of support is
considered. An approximate analysis shows that
such a support has an extremely large effect on the
vibratlion and flutter characteristics of
corrugation-stiffened panels, and consideration of
this type of support greatly improves the agreement
between flutter theory and experiment for

.corrugation-stiffened panels.

Introduction

Panel flutter is a self-excited oscillation of
the external surface skin of a flight vehicle which
resuits from the dynamic instability of the aerody-
namic, inertia, and elastic forces of the system.
This type of instability was supposedly first
encountered in flight by the German V-2 missileslt
and was considered to be the cause of several fail-
ures. During the 1950's several experimental
investigations were conducted to verify the exist-
ence of panel flutter and to determine some of the
effects of such parameters as papel length-width
ratio, thickness, and differentisl pressure.l,2
During this same period panel flutter was the sub-
ject of numerous theoretical investigations which,
for the most part, were restricted to semi-infinite
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panels or panels on many supyorts.3”6 Hedgepeth's7
application of the two-dimensional static aerody-
namlc approximation to the panel flutter problem
greatly simplified the analytical complexities and
resulted in a differential equation that can be
solved exactly for finite panels. Comprehensive
reviews of both theoretical and experimental panel
flutter investigations conducted prior to 1960 have

been published by and Stocker.d

During the period preceding 1960, panel flut-
ter had been considered more or less as an academic
problem of 1little practical significance. However,
about 1959 wind-tunnel tests indicated that certain
structural components of the X-15 airplane were
susceptible to panel flutter.10,11 These reports
were followed by a published compilationle of
flight flutter results for existing aircraft which
indicated that panel flutter had become a signifi-
cant structural problem in the design of supersonic
vehicles.

The emergence of panel flutter as a signifi-
cant structural problem caused the generation of
considerable experimental and theoretical research.
A partial bibliography of these investigations is
given in the references.l3- Mthough the variety
of configurations studied experimentally were sel-
dom representative of the idealized conditions
imposed by theory, these studies have revealed
major differences between experiment and theory for
both stressed isotropic panels25 and unstressed
corrugation-stiffened panels.26 In addition, a
third area of concern is flutter of long narrow
panels for which it is generally thought that more
refined aerodynamic theories are necessary to pre-
dict flutter results accurately. It is the purpose
of this paper to determine whether flutter results
utilizing two-dimensional static aerodynamics are
applicable to long narrow panels and also to exam-
ine reasons for the apparent differences between
theory and experiment for stressed isotropic panels
and unstressed corrugation-stiffened panels.

In order to assess the accuracy of the theory
using two-dimensional static aerodynamics and to
determine its range of validity, a simply supported
isotroplc panel has been investigated in both the
stressed and unstressed conditions. Calculated
flutter results utilizing the simpler two-
dimensional aerodynamics are compsred with results

obtained from an analysis by Cunningham27 which
utilizes three-dimensional unsteady aerodynamics
(hereafter referred to as exact aerodynamics).

For unstressed panels the comparison is used
to examine the range of Mach number M and length-
width ratio a/b for which the simpler aerody-
namic approximation gives reasonable results for
simply supported isotropic panels. Since consider-
able attention has previously been given to the

range of % < 1, and since other factors such as

boundary layer appear to be important in this




range,28’29 numerical results will be presented

only for the range % 2 1. It will be shown that

for M2 1.3 the approximate aerodynamic theory is
in good agreement with the exact aerodynamic
theory. In addition, 1t i1s shown that theory is in
reasonable agreement with experiment for unstressed
isotropic panels.

For stressed isotropic panels experiment indi-
cates that the most critical portion of the flutter
boundary occurs at the transition from the flat
unbuckled boundary to the postbuckled boundary.l7
However, theoretical results based on the approxi-
mate aerodynamics indicate that the most critical
condition for flutter can occur at values of mid-
plane load considerably less than that required for
buckling.22,25 It has been suggested that this
discrepancy 1s due to the use of the static aero-
dynamics.25 A flutter analysis of a stressed panel
utilizing the exact aerodynamics is made, and it is
found that although damping has a pronounced
effect, the exact aerodynamics does not completely
eliminate the apparent discrepancies.

In addition, experimental and theoretical
results for corrugation-stiffened panels are pre-
sented. It 1s shown that the orthotropic plate
equation should give flutter results in reasonable
agreement with experiment for unstressed panels.
However, test results for corrugation-stiffened
panels indicate that in some cases flutter occurred
at dynamic pressures as low as 2 percent of the
theoretical value for a simply supported panel.
This large discrepancy is attributed to the
improper representation in the theory of the flex-
ibility of the edge supports at the ends of the
corrugations. Analyses are presented to show that
because of the stiffness properties of a
corrugation-stiffened panel, the deflectional flex-
ibility of the edge attachments can greatly affect
the flutter characteristics. An approximate flut-
ter analysis of this effect 1s presented, and for a
reasonable estimate of the edge flexibility for the
experimental panels experiment and theory are found
to be in fair agreement.

S ols

A flutter parameter defined by equa-
tion (All)

Am,Bp constants of integration

a panel length in x-direction

B frequency parameter defined by equa-
tion (A11)

b panel width in y-direction

Co,Cl,CE,Cj coefficients defined by equations (A5)

D flexural stiffness of isotropic panel

Dy flexural stiffness of orthotropic
panel in x-direction

Dy flexural stiffness of orthotropic
panel in y-direction

ny twisting stiffness of orthotropic

panel

Dy
Dl =
1 - Ry
D2 = Dy
1 - uxp,y
F complex amplitude of panel vibration
(see eq. (A9))
g structural damping coefficient
K deflectional spring constant per unit
width
K spring-panel stiffness parameter (see
eq. (B15))
M Mach number
m integer
N inplane loading in x-direction (posi-
tive in compression)
Ny inplane loading in y-direction (posi-
tive in compression)
Nx,cr critical inplane load
P lateral loading
_ 1/2
P = Jf pY dy
-1/2
q dynamic pressure of alrstream
R roots of characteristic equation

(eq. (B10))
2Dy
r = (11:_) (f + px>

= (3) 2y -]

t time

v total potential energy of system

w lateral deflection of panel

X,y Cartesian coordinates of panel

Y assumed function describing shape of

flutter mode in y-direction

Y function describing shape of natural
mode of vibration in y-direction
(see eq. (B16))

a,e€ roots of transcendental equation
(eq. (B13))

B =yMe - 1

4 mass per unit area of panel




Thus, the three-dimensional and unsteady effects
are seen to be small. However, some unpublished
results obtained by Cunningham for a/b of 1 (not
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shown in fig. 1) indicate a variation of -

of approximately 30 percent as M 1s varied from
1.3 to 3; again the results for M = 3 are essen-
tially identical to the results obtained from the
closed-form solution. Hence, it may be expected
that the three-dimensional and unsteady effects are

&<
5= 1.
The Mach number effect given by the approximate

aerodynamic theory is, of course, accounted for
only by the ordinate parameter.

important in the low Mach number range for

For % 2 6 the results obtained from the

closed-form solution are also in excellent agree-
ment with the "mode 2,1" results shown from the
exact aerodynamic theory. Although the question of
convergence of the solutions exists, even the
lowest of the other boundaries obtained from the
exact aerodynsmics were also in fair agreement with
the closed~form solution, differing at most by

8 percent at a/b of 8 ("mode 3,4" boundary) and
18 percent at at a/b of 10 ("mode 11,12" bound-
ary). Hence, at least fair numerical agreement is
shown for M as low as 1.3 and a/b as large as

10 (or s% of 0.083).

The circles in figure 1 represent pub-

118hedt 721 apd unpublished experimentel flutter
points for isotropic panels obtained at a Mach num-
ver of 3.0. The experimental data shown are for
essentially flat panels tested under aerodynamic
heating conditions. In general, these points were
obtained from tests that involved thermal midplane
stresses, but data were obtained sufficiently close
to zero thermal stress that an extrapolation could
be made to get essentially zero stress flutter
points. The data shown are for clamped edges and
edges intermediate between simply supported and
clamped. The scatter in the data shown is probably
due in part to difficulties in extrapolating to
zero stress points. Such scatter is fairly typlcal
of panel flutter experiments when data are obtained
from a variety of configurations. However, con-
sidering the entire range of a/b from 1 to 10,
the agreement between theory and experiment must be
considered reasonable.

It would be difficult to determine from fig-
ure 1 the trend of the results for %—> 10. A bet-

ter insight can be obtsined by redefining the flut-

ter parameter in terms of the panel width instead
2aqb3 1/3

of length and plotting this parameter (—%B—>

as a function of afb as is shown in figure 2.

The solid curve 1s the boundary obtained from
Hedgepeth's closed-form solution of the governing
differential equation and indicates that the
dynamic pressure for flutter is essentially inde-

pendent of length for %> 10. Calculstions from
exact aerodynamics (indicated by the square and

diamond symbols) suggest the same thing; hence, it
would appear that for M 2 1.3 two-dimensional

static aerodynamics is applicable for any

unstressed panel over the entire range %-> 1.

Figure 2 also 1llustrates the validity of a
useful simplified method for the calculation of the

flutter parameter. Movchan3l pointed out a solu-
tion to the differential equation which corresponds
to a natural mode of vibration under airflow where
the motlion 1s stable. That 1s, the airflow corre-
sponds to a speed less than the flutter speed.

This solution, which is referred to as the "pre-
flutter" solution, leads to the following simple
algebraic equation rather than the complex tran-
scendental equation required for the complete
solution

b=Ao - ) w

where for simply supported isotropic stress-free
panels

")

Results from equation (l) are shown by the dot-
dashed curve in figure 2 which is in very close
agreement with Hedgepeth's solution; in fact, for

% > 2 +the two virtually coincide. Thus, for the

range of M and a/b for which two-dimensional
static aerodynemic theory is valid, the critical
value of the flutter paremeter for unstressed iso-
tropic panels can be readily obtained from equa-
tion (1). Based on the comparison of theory with
experiment shown in figure 1, the results so
obtained should be fairly accurate.

Stressed Panels

The results just presented would suggest that
the trends obtained from analyses utilizing two-
dimensional static aerodynamics would be essen~
tially correct, particularly for moderate values of
a/b and large values of M. However, it appears
that for stressed panels the theoretical trends are
often not correct. For example, it has been

shown25 that for no damping, two-dimensional static
aerodynamics predicts zero dynamic pressure
required for flutter of stressed panels whenever
the compressive midplane load has caused the two
lowest panel vibration frequencies to be equal. In
addition, the theory indicates changes in flutter
mode as the compressive load increases although
such changes have not been observed experimentally.
Although the inclusion of aerodynamic and struc-
tural damping removes the zero dynamic pressure
pointse, the overall trends are otherwise unaltered.
On the other hand, experimental flutter bound-

arieslT-21 display none of the anomalous behavior
agsociated with coincidence of the theoretical fre-
quencies. It has been suggested that this discrep-
ancy between theory and experiment for stressed
panels 1s due primarily to the use of static aero-

dynamics.25 Thus, it would be interesting to con-
sider some results for stressed panels based on
exact aerodynamics which, of course, includes the
unsteady effects.
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_ 2qa.3
BDy
My s Poisson's ratlo associated with curva-
Yy . s
ture in y- and x-directions,
respectively
=X
¢ = a
o) parameter defined by equation (B1T)
¥ parameter defined by equation (B15)
w circular frequency

Comparison of Flutter Results From

Approximate and Exact Aerodynamics

Hedgepeth's paper7 utilizing two-dimensional
static aerodynamics made several comparisons with
results obtained from more refined aerodynamics.
He found good agreement between the results for
two-dimensional (strip theory) and three-
dimensional (surface theory) static aerodynamics

when B % 2 1; he did not consider the case for

B g < 1. He also compared his results with the

results of a two-mode analysis which toock into
account unsteady effects for both the two-
dimensional and three-dimensional theories for
values of &/b of O and 1. The results based on
unsteady aerodynamics agreed well with the results
based on the static approximation for values of M

greater than somewhere between J2 and 2. The
results based on three-dimensional unsteady aero-
dynamics were for an array of panels.

The filutter analysls recently formulated by
Cunningham27 permits investligation of single finite
panels using exact three-dimensional unsteady aero-
dynamics. Because of the complexity of the prob-~
lem, the analysis 1s of the modal type requiring
high-speed computing machines. In this paper the
exact aerodynamics is employed to examine the use-
ful range in Mach number and length-width ratio

(for %-2 l) of the closed-form solution based on

two-dimensional static aerodynamics for unstressed
panels. In addition, a flutter analysis is made to
determine whether the use of exact aerodynamics
alters the trends indicated by the two-dimensional
static aerodynamic approximation for stressed
panels.

Unstressed Panels

Some theoretical and experimental results for
flat rectangular panels are shown 1n figure 1 in

2qad 1/3
terms of the panel flutter parsmeter 8D

and the panel length-width ratio a/b. The panels
are stress free and the flow is as indicated in

this figure. The solid curve represents the fiut-
ter boundary for panels simply supported on all

edges as given by Hedgepeth's7 closed-form solution
of the differential equation based on two-
dimensional static aerodynamics. The dashed curve
represents the flutter boundary obtained from an

analysis by Houboltjo utilizing the same aerody-
pamic approximation for panels clamped on all
edges. The square symbols represent flutter points

calculated by Cunningham27 for simply supported
aluminum-alloy panels at sea level for a Mach num-
ber of 1.3. The diamond symbols represent flutter
points obtained by Cunningham's method for the same
panels but at a Mach number of 3.0.

The results of the closed-form solution, based
on the approximate aerodynamlics, shows that for
unstressed panels the critical flutter boundary
always results from the coalescence of the frequen-
cies of the two lowest natural modes of vibration.
The unlebeled diamond symbols shown in figure 1
also correspond to a "mode 2,1" boundary. (In this
discussion, the flutter boundaries cbtained from
the exact aerodynamics will be described by refer-
ence to the two most predomlnant vibration modes in

the flutter mode shape.) For % > 6 the exact

serodynamics indicaeted that higher mode boundaries
could become the critical boundaries as indicated
at % = 8 and 10 by the labeled diamond points.
(The subscripts indicate the dominant modes.) How-
ever, it is felt that this result is attributable
to nonconvergence of the solution. At present
Cunningham's method is programed for computation at
the Langley Research Center so as to employ & maxi-
mm of 12 modes. Thus, for example, a "mode 11,12"
boundary would not be expected to be fully con-
verged, while a "mode 2,1" boundary would be more
nearly converged. When less than 12 modes were
used in the analysis, the flutter boundaries were
raised as the nunber of modes used in the analysis
was increased. Calculations were made for a/b

of 10 using modes 3 through 14, These calculations
raised the "mode 11,12" boundary considerably and
probably resulted in a more converged solution. In
addition, Hedgepeth has shown for the approximate
aerodynamics that when an insufficient number of
modes 1s used in the analysis, the resulting flut-
ter boundary is lower than the boundary obtained
from the closed-form solution (provided an even
number of modes is used). For these reasons 1t was
felt that the "mode 2,1" boundary results (the
unlabeled diamonds) at a/b of 8 and 10 more
nearly represent the converged solutilon.

For % < 6, the modal solution, based on the

exact aerodynamics, is considered to be well con-
verged. For this range of a/b the results
obtained from Hedgepeth's solution are in excellent
agreement with the flutter results obtalned using
exact aerodynamics. The differences in the results
glven by the exact and approximate aerodynamic
theories are considered to be a measure of the
three-dimensional and unsteady effects. At a/b
of & (fig. 1) the exact aerodynamics indicates a
variation of <2q33
gD
as M 1is varied from 1.3 to 3 with the results
obtained for M = 3 essentially identical to the
results obtained from the closed-form solution.

1/3
> of approximately 7 percent




Figure > shows theoretical results cbhbiained
from both the two-dimensional static and exact
aerodynamics for a simply supported panel. The

panel length-width ratio is 4 and Ny = 0. The
exact aerodynamics results were obtained from a
six-mode solution and are based on aluminum-alloy
panels at sea level at M = 3.0; this value of M
corresponds to the value at which most published
experimental data for stressed panels have been
obtained. The results are presented in terms of
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the flutter parameter and the ratio of

the midplane compressive load to the critical value
required for buckling NyfNy cr- The solid curve

represents the results obtained from Hedgepeth's
solution based on the approximate aerodynamic
theory; the numbers on the curve indicate the

modes that coalesced for flutter. As can be seen
from figure 3, zero values of the flutter parameter
occur at values of NyfNy oy oOf approximately 0.58,

0.71, and 0.89, and the flutter mode changes from &
combination of modes 1 and 2 to a combination of
modes 3 and 4.

The circles on figure 3 represent flutter
points obtained from exact aerodymamics for no
structural damping. As can be seen, these results
are in excellent quantitative agreement with the
results based on the approximate aerodynamic theory
except near the critical values of Ny/Nx or vhere

the aerodynamic damping, which is included in the
exact theory, tended to eliminate the zero-dynamic-
pressure flutter points. The exact aerodynamics
also indicated changes in flutter mode similar to
the changes given by the closed-form solution.
Thus, the use of exact amerodynamics has little
effect on the differences between theory and exper-
iment for flutter of stressed panels. The dashed
and dot-dashed curves shown in figure 3 represent
results obtained from the exact aerodynamics for
values of the structural damping coefficient of
0.0l and 0.025, respectively. As can be seen,
structural damping also has a large effect near
regions where the approximate aerodynamics predicts
zero values of the flutter dynamic pressure. This
same trend was observed for the approximate aero-
dynamic theory when damping was added to the anal-
ysis.25 The inclusion of damping in the analysis
tends to smooth out the saw-toothed-like boundary

N.
( X _>o. 5), and the resulting flutter trends
X ,cr
might be considered to be in qualitative agreement
with existing experimental boundaries. EHowever,
the large values of damping necessary to obtain
this agreement suggest that other factors such as
boundary layer, differential pressure, and initial
imperfections must be considered if.the discrep~
ancles are to be removed.

It should be pointed out that most experi-
mental investigations of stressed panels did not
include measurements or control of the boundary
layer or initial imperfections and considered dif-
ferential pressure in an approximate manner, if at
all. In addition, the panels were usually sub-
Jected to nonuniform temperature increases and the
stress distributions are imperfectly kmown at best.
Thus, & need for more refined experimental data to
serve as a guide for future theoretical investiga-
tions 1s obvious.

Flutter Results for Orthotropic Panels

The use of orthotropic panels, and, in partic-
ular, corrugation-stiffened panels, has had wide-
spread application in design of exposed skin com-
ponents of supersonlic and reentry type vehicles.
Although the general practice of orienting the cor-
rugations normal to the airstream results in a
panel much more susceptible to flutter than the
same panel with corrugations in the direction of
the stream, the flutter dynamic pressure given by
theory may still be considerably greater than that
for an isotropic panel of equal weight. However,
it will be shown below by recent experimental
results for corrugation-stiffened panels that direct
application of conventional theory gives highly
unconservative results. Since the results reported
above indicate that the approximate aerodynamics
of the conventional theory probably does not
account for this discrepancy, another potential
reason will be considered in some detail.

Comparison of Theory and Experiment

As was noted previously, application of
Cunningham's2T flutter solution using exact aero-
dynamics (see fig. 1) revealed that two-dimensional
static aerodynamics is useful over a much greater
range of length-width ratio than previously
expected. It was also shown that for negative

values of A, Movchan st preflutter solution pre-
dicts the flutter speed adequately. (See flg. 2.)
Thus, since corrugation-stiffened panels are repre-
sented by large negative values of A, Movchan's
solution will be used for comparison with
experiment.

Some recent experimental data are compared
with the preflutter solution in figure 4 on a plot
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of the dynamic-pressure parameter B% and
1

the stiffness parameter A. The theoretical

results for orthotropic penels can be shown16 to be
the same as for isotropic panels if D 1is replaced
by Dy (the streamwise flexural stiffness) in the

ordinate parameter and the stiffness ratio ny/Dl
is used in the abscissa parameter.

The curve is the theoretical flutter boundary
based on the preflutter solution for simply sup-
ported edges. The symbols represent experimental
flutter results for unstressed panels. The diamond
symbol is a flutter point for a square corrugation-

stiffened panel tested at a Mach number of 1.87.02
The two square symbols represent data on
corrugation-stiffened panels with geometric length-
width ratios of 1.5 and 10 obtained from wind-
tunnel tests at Mach 3 on the full-scale X-15 ver-

tical stabilizer.ll The other symbols represent

published26 and unpublished data cbtained from
corrugation-stiffened panels at Mach number 3.0
with length-width ratios of 1.0. As can be seen,
the theoretical predictions for orthotropic panels
are highly unconservative; the difference between
theory and experiment increases rapldly as A
increases negatively.

The large discrepancles shown probably cannot
be explained on the basis of a single parameter.



It appears now, however, that the exact aerody-
namics will not eliminate the problem. Further,
the panel stiffnesses Dj, Dy, and Dy, are

believed to be known adequately. These stiffnesses

were calculated by the method developed by S’c,rorud33
in which experimental verification of the theoret-
ical results is shown. Including the effects of
finite transverse shear stiffness has been shown™>
to have a significant effect on the flutter pre-
dictions 1f shear deflections are important com-
pared with bending deflections. However, prelimi-
nary calculations of these stiffnesses for the
panels represented in figure 4 indicated that shear
deflections would not be significant and, thus,
theory that neglects transverse shear stiffness
should be valid.

The large dlscrepancies between theory and
experiment may, however, be explained by the dif-
ferences between the idealized boundary conditions
assumed in the theory and the actual edge restraint
imposed by the panel supports. Due to the nature
of the construction of currugation-stiffened panels,
the corrugations seldom extend the full width of
the panel and the entire cross section is not
firmly anchored at the support. In practice,
attachment of the edges of corrugation-stiffened
panels mey be similar to those illustrated in fig-
ure 5(a) where the corrugations hang freely at the
edge éopen end) or are crushed to the flat outer
skin (closed end). Usually the attachment to the
support 1s made only through one or two sheet
thicknesses and, thus, the panel can experience
Jocalized deflections in the vicinity of the edges
in a manner similar to that indicated in fig-
ure 5(b). Therefore, instead of zero deflection at
the edge, the panel can be consldered to be
attached to deflectional springs with stlffnesses
that may be quite small compared with the maximum
flexural stiffness Dp of the panel. The ideal-

ized panel configuration shown in figure 5(c)
(simply supported on the leading and tralling edges
and supported by deflectional springs on the other
two edges) is analyzed for flutter and dlscussed in
the following sectlons.

Effects of Deflectional Spring Supports

Analysis.- In appendix A the method of

Kza.x:d:orovichy+ is employed to obtain the governing
differential equation and boundary conditions for
flutter of orthotropic panels simply supported on
the leading and trailing edges and supported by
deflectional springs along the streamwise edges.
The method involves the assumption of & cross-
stream mode shape which is integrated over the
panel width. Thus, the coefficients of the
resulting ordinary differential equation (eq. (A10))
are functions of the assumed cross-stream mode
shape. (See egs. (A5).) This differential equa-
tion, which can be solved exactly, describes the
problem in an approximate manner and is correct
only when the edges parallel to the alrflow are
simply supported. However, satlsfactory solutions
can be obtained for other boundary conditions pro-
vided the assumed mode shape is & good approxima-
tion to the actual deflection. The cross-stream
mode shapes used herein were obtained from the nat-
ural vibration modes of the panel which are calcu-
lated in appendix B.

The results of the vibration analysis can also
be used to give a further insight into the flutter
characteristics of orthotroplic panels supported on
deflectional springs. The vibration frequencies
for modes having one half-wave in the y-direction
and m half-waves in the x-direction are shown in
figure 6 as a function of the panel stiffness for
various values of the spring stiffness. The curves
shown were obtained upon solution of the transcen-
dental equation (Blh) of appendix B. The line for
an infinite spring stiffness (K = ») gives the fre-
quencies for a panel simply supported on all edges.
As K takes on smaller finite values, the panel
frequencies are seen to decrease rapidly; for K =0
(lateral edges completely free) the solution reduces
to (neglecting Polsson's effect) that for a simply
supported beam of stiffness D;. As can be seen

from the figure, for small values of the spring

stiffness (K = 1, which is typical of some of the
panels tested) the panel approaches the vibration
behavior of a beam. This result may have a very
pronounced effect on the flutter characteristics

of corrugation-stiffened panels orlented such that
the flexural stiffness D, 1s greater than D; or,

in general, for panels having large negative values
of A. That such is the case can be illustrated by
an example from figure 4, Consider a square simply

supported (K = =) panel at A = -1500; the predicted

1/3
flutter parameter is (%£> = 95.
1 -
shown that a beam is represented by A = 0. Thus,
this same panel, if it were not supported along the
edges (K = 0), would have a value of the flutter

It can be

1/3 _
parameter gﬁ = 7. In other words, if K 1is
BDy

small enough that the panel behavior is more like a
beam than & simply supported panel, there can result
a change of several orders of magnitude in dynamic
pressure required for flutter. On the other hand,
for a geometrically similar (% = l) isotropic panel,
A =-2 when K =w and the difference between the
result for a beam and the result for a simply sup-
ported panel is relatively small.

Theoretical flutter results and comparison with
experiment.~ Theoretical flutter results are cor-
rected for finite deflectional springs as shown in
appendix A. The solution is seen to be identical to
that for an isotropic panel provided the param-
eter A 1is redefined according to equation (A11).
For the case of zero stress A 1s given by (neg~
lecting Poisson's ratio)

X -2(5>2 % Dy (2)

b) e, Dy

C

b is a function of the mode

Co

shape as indicated in equation (A5); for the natural

The coefficlent

vibration modes derived in appendix B varles
7°C,
with the spring stiffness parameter K as indicated
_ Cy
in figure 7. As K approaches e, e

(o]




valid unless special attention is given to the
solution at the boundaries. For this case a more
direct approach to the ordinary differential equa-
ticn can be made by applying the method of
Kantorovich,y“ which starts with the expression for
the potential energy of the system. This method
will be used in the following analysis for an
orthotropic plate.

Consider the panel shown in figure 5(c) simply
supported on two opposite edges and supported by
deflectional springs of stiffness K on the other
two edges. The panel has a length a and width b
and 1s subjected to inplane loads Ny = and Ny and

a lateral load p. The total potential energy of
the system is written, in terms of orthotropic

plate properties, as :55

V=%~/(;a f-b/gpl(%fi,epybl%g_;g

b/2
2 \2 2 2
ol ol o n(2)
2 1 a
—Ny(—> dy ax + 3 fo kw2|b/2dx
1 a
+ 2 ‘/; kw2|_b/2dx (A1)
where
)
T
B
Dy 1- Mgty (a2)
and
HyDo = pyDy

J

If the deflection is assumed to be gilven by

¥ = Y(n)F(&) (83)
where Y 1is a known function and 1 =% and

€ = %, the problem 1s to find the function F

which renders V a minimum., Substituting (43)
into (A1) and integrating with respect to 7 glves
the potential energy as

rop [ P2 s 20
[¢]

z " o2
+ (Ef;% - g% C5>F2 + (EE;%;Z - g% CO)(F')2
- 213F]d§ +2 /(‘)1 KE@(’;) + 12(_ %)]Fedi

(Ab)

where

/ 3
1/2

Co = f Y2an
-1/2
1/2

cqy = f YY"dn

t -1/2

1/2
o= [ 2 r (45)

1/2
C5 = f (¥1)%an

S

The primes denote differentiation with respect to
1 or €&. Application of the calculus of varia-
tions to equation (A4) leads to the following dif-
ferential equation on the function F

AV 4 [;Nx ofef 22 B a oY C_l]p

b Dl Co Co
2
+ (a)”_ece a2ty C3
b iy Co b Dl Co
b=
. oK (2)+ (- L - 22 o
bDlC 2 D¢y (46)
and the corresponding boundary conditions at
E=0,1
2C
F"+uy(§) droo 1
b Co
or BF' =0
(A7)
2 Dy, C 2 2
ST 2(5) ﬂ.ﬁ-ﬂ-“ a C_lpv =0
b/ Dy C, D Y\b ¢
or &F =0 J

Note that simply supported or clamped edges are
permissible boundary conditions on F.

Although equation (A6) was derived from static
considerations only, it may also be applied to
dynamic problems upon proper substitution for the
lateral loading. For supersonic flow at Mach num-
ber M 1in the x-direction the following aerody-
namic end inertia loadings are substituted for p
(where the serodynamic loading is that given by the
two-dimensional static approximation)

-2 P 8
P w32 (a8)




approaches 1 and N corresponds to a simply sup-
ported plate; if there is no support at the lat-

eral edges (K = 0), is zero and A 1is then

Lo
zero corresponding to a beam.

From figure 7 it can be seen that in order to
apply the rgsults to panels having intermediate
values of K 1t is necessary to specify an addi-

2
tional parameter |[m E) EEZ
&/ Dy

gitudinal mode number in the vibration analysis.

It would seem reasonable to plck & mode number (m)
corresponding to the mode which contributes most to
the deflection of the flutter mode; this mode num-
ber was consldered to be that nearest twice the
panel length-width ratio such that the parameter

= |

The results of the analysls of the deflectional
spring effect have been applied to the experimental
data from figure 4 and are shown in figure 8; note
that the abscilssa parameter A now contains the

where m 1is the lon-

C

2 . The open symbols represent the
7C,
locatlon of the experimental data if all panel

c
3
=1.0]).

“Cq >
The solid symbols with the band represent the
approximate locations of the data when the deflec-
tional spring effect is taken into account. Unfor-
tunately, the experimental investigations were not
conducted to evaluate the effects of deflectional
spring supports and, thus, the actual spring con-
stants for the test panels were not measured nor
amenable to simple calculations. The method used
to calculate K accounts for the reduction in
flexural stiffness Dy near the supports as well

as the flexibility of the supports. It 1s felt
that the assumptions employed in the spring calcu-
lations yield values of K probably greater than
actual values; therefore, a minimum value for ¥
was chosen arbitrarily as one~-half the calculated
K. Use of these two values of K and the param-

coefficient

edges were simply supported <that is,

eter (m E) = 2 allows the test results to be

plotted as a band covering a range of A.

The sallient fact is that the effect of finite
deflectional spring stiffness along the panel edges
1s so signiflcant that portions of the experimental
band now lie reasonably close to theory. Thus,
while more careful determination of support stiff-
ness and, perhaps, a more exact analysls would
have to be made to obtain the true effect, it may
be concluded that prediction of the flutter charac-
terlstics of orthotroplc panels requires careful
conslderation of the edge attachments and supports.

Concluding Remarks

Results obtalined from panel flutter theory
utilizing exact aerodynamics are compared with
results obtained from theory employing two-
dimensional static aerodynamics. This comparison
revealed that the flutter boundary for unstressed
rectangular isotropic panels obtained from the
simpler aerodynamic theory agreed well with the

results based on exact aerodynamics for Mach numbers
M 2 1.3 and values of the panel length-width ratio
afo from 1 to 10. Both theories suggest that the
flutter dynamic pressure is essentially independent

of length for %-> 10. Thus, the approximate aero-
dynamics appears applicable for M 2 1.3 for the

entire range of % > 1.0. Although exact solutions

based on the approximate aerodynamics still require
considerable effort, Movchan's preflutter solution
is shown to give essentially the same results with
a tremendous saving in effort. The preflutter
solution yields a simple algebraic expression for
the critical flutter dynamic pressure. The theo-
retical boundaries were in reasonable agreement
with experimental data obtained from stress-free
isotroplc panels over the range of a/b from 1

to 10.

Application of the exact aerodynamlcs to the
flutter of stressed lsotropic panels ylelded
results similar to those obtained from theory based
on the two-dimensional static aerodynamics. The
results indicated trends that differ from the
trends shown by experiment. Although damping
tended to remove the differences between theory and
experiment, it appears that other factors (for
example, differential pressure, initial imperfec-
tions, etc.) must be considered if the discrep-
ancies are to be removed.

In contrast to the results for isotropic
panels, experimental data presented for stress-free
orthotroplc (corrugation-stiffened) panels were as
low as 2 percent of the theoretical predictions for
simply supported panels. This large discrepancy
was attributed primarily to the use in the theory
of the idealized edge attachment normal to the cor-
rugations. A vibration analysis was made on ortho-
troplc panels supported by deflectional springs
along edges normal to the corrugations. This anal-
ysls showed that for small values of spring stiff-
ness the orthotropic panel behaved more like a
beam then a plate. Such characteristics are shown
to reduce greatly the dynamic pressure for flutter.
The experimental data for the corrugation-stiffened
panels, corrected for calculated values of the
deflectional spring stiffnesses of the test panels,
showed marked improvement in comparison with theory.
These results indicate that careful consideration
of edge attachments of orthotropic panels is
required for reliable flutter predictions.

Appendix A
Flutter Analysis of Orthotropic Panels

on Deflectional Spring Supports

A method commonly employed for a flutter anal-
sis of flat, finite panels consists of assuming a
deflection function as the product of a known func-
tion which satisfies the boundary conditions on two
opposite edges and an unknown function, and then
applying the Galerkin procedure to reduce the par-
tial differential equation to an ordinary differ-

entlal equation in the unknown function.29¥30 The
ordinary differential equation may then be solved
directly for flutter. However, 1f the edges of the
panel are permitted to deflect, a product solution
cannot satisfy the boundary conditions. Therefore,
application of a Galerkin procedure may not be




where q 1s the dynamic pressure of the flow, 7

is the panel mass per unit area and B = ‘M2 - 1.
Then assuming the deflection as

w = Y(n)F(e)elot (49)

where the frequency «® is real for harmonic motion
and complex for flutter, the differential equa-
tion (A6) can be written as

FIV + 22EF" + AF' - 2*BF = 0 (a10)
for
2Ny a\2 Dxy/ C a\2/ C )
i ienl i) Dly(,@_z;) %(5) ("2(1:0>
= 2122 Cy 2 D5/ C
- (6 ()@ ) -
4 All
+ (&)2 .8k Ee(;) + (- l)]
“r n:l"bDlCc> 2 2
BDy
F e
_ 'y
ot TR J

It should be noted that the governing differential
equation (A10) is identical to that obtained by

Hedgepeth7 for simply supported lsotropic panels.
Therefore, the exact solution obtained therein for
simply supported leading and trailing edges is
applicable to equstion (Al0), and the results of
this solution are used directly in the text to show
the effect of deflectional spring supports on the
flutter characteristics for assumed modes Y(n),
derived in appendix B, corresponding to the exact
vibration modes.

Appendix B
Vibration Analysis of Simply Supported Panel

on Deflectional Springs

In this appendix the exact vibration analysis
is presented for an orthotropic panel simply sup-
ported on two opposite edges and elastically sup-
ported by deflectional springs of stiffness K on
the other two edges. The panel and the coordinate
system are shown in figure 5(c). Neglecting
inplane loads, the differential equation from
small-deflection theory governing vibrations of the

orthotropic panel 15:33

4 by Iy
o'w 'ty O'w 2w
D + 2 Dx + D. + Dy == +y===0
1 T KHxU2 2
ax ( yox ) 2y oy 32

(81)

Solution to equation (Bl) must satisty the fol-
lowing boundary conditions:

V(O,Y)t) = V(a;y;t) = V’xx(o,vy‘vt) = V’xx(a;y,'t) =0

(B2)

(V0 * o), = O (83)

[;Kw - (2ny + ung)V,m - Dgw’m]ya‘i =0 (BY)

where the subscripts comma followed by x or y
denote differentiation with respect to the indi-
cated subscript. Equation (B4) accounts for

Kirchoff's shear along the edges y =% g

For simple harmonic motion a solution to equa-
tion (Bl) is taken in the form

W= z Yp(n)sin l—naE elot (B5)
c .

where 1 = %. Equatlon (B5) satisfies, term by
term, the boundary conditions of equations (B2).
We seek then the function Yy(n) which will sat-

1sfy the boundary conditions (B3) and (BY4). Sub-
stituting equation (B5) into equations (Bl), (B3),
and (B4) results in the following differential
equation and boundary conditions on Ym( n):

ny - 2(“1‘?.)2(1)1! fu >Y"

a Dy X/ m
b

ab\' Dij 2l

+ (3_) gEn - (“%):]Ym =0 (86)
2
Ef&i - (22 Y;Jn Rl (1)
2
" 2 1 5
e R

T2 (g

where @, = \1—1—1 is the fundemental frequency of
7a
a beam. The characteristic equation of (B6) is

R - 22r B2 - i, = 0 (89)
from which the roots of R become

R =2%mfr; £ r2 +r (B10)
1 1 2




where
r mb Ixy w
1 = = —— +

(B11)

RO ORI

It can be shown that rp 20 and 1y 1s always

positive. Thus, from equation (B10O) the roots are
either real or purely imaginary. Then considering
only even functions of Yy ylelds the following
solution to equation (B6):

Y, = Ay cosh ann + By cos emy (B12)
where
= 2
a = Vrl + \/rl + 15
(B13)

_\’ f2
€ =\-r; + T +r2

Upon substitution of equation (B12) into the
boundary conditions on Y, {egs. (BT) and (B8)),

a nontrivial solution requires that the determinant
of the coefficients of A, and B, be zero; this

gives the following transcendental equation:

6(62 + q;)ztan € %+ a,(a.e - \y)2 tanh a,%
- K2 +e2) =0 (B1%4)
where
7 b
£ 5o
(B15)

RO

Equation (Bl4) is solved for the roots a
and € for known values of the parameter ry
spring stiffness parameter K. Solutions to equa-
tion (Bl4) (for uy = O) are shown in figure 6 and
discussed in the text. For each root of a and ¢
the corresponding mode shape Y, is

and

Y.(n) =Bg(cos exn + @ cosh any) (B16)
where
b 2
2 + ux(m?) cos € g
Q= 2 p (BLT)
@ - “x(uiT) cosh a 3

Equation (B16) is employed in the text to show the
effects of deflectional spring stiffness on flutter
predictions of orthotropic panels.
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